a2 United States Patent

Fagiano et al.

US009304865B2

US 9,304,865 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

EFFICIENT HANDING OF
SEMI-ASYNCHRONOUS RAID WRITE
FAILURES

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: Christophe Fagiano, Mouans-Sartoux

(FR); Itzhack Goldberg, Hadera (IL);

Carl E. Jones, Tucson, AZ (US); Moriel

Lechtman, Haifa (IL); Neil Sondhi,

Budapest (HU)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 148 days.

Appl. No.: 14/225,692

Filed: Mar. 26,2014
Prior Publication Data
US 2015/0278019 Al Oct. 1, 2015
Int. CI.
GOGF 11/00 (2006.01)
GOGF 11/14 (2006.01)
GO6F 11/10 (2006.01)
GO6F 11/20 (2006.01)
U.S. CL
CPC ... GO6F 11/1451 (2013.01); GO6F 11/1092

(2013.01); GOGF 11/2069 (2013.01)
Field of Classification Search
CPC GOGF 11/1092; GOGF 11/1451; GOGF
11/1466; GOGF 11/1474; GOGF 11/2064;
GOGF 11/2069
See application file for complete search history.

300

(56) References Cited

U.S. PATENT DOCUMENTS

6,711,632 Bl 3/2004 Chow et al.
7,089,383 B2* 82006 Ji ...oooooiiiiiiiinnn. GO6F 11/2066
707/999.202
7,181,479 B2* 2/2007 Suzuki GO6F 11/1474
707/615
7,299,378 B2* 11/2007 Chandrasekaran . GO6F 11/1474
714/15

2003/0014523 Al 1/2003 Teloh et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0980041 A2 2/2000

JP 2012081629 A 4/2012

WO 2006023990 A2 3/2006

WO 2006119100 A2 11/2006
OTHER PUBLICATIONS

Parissis et al., “BLAST: Off-the-Shelf c¢. Hardware for Building an
Efficient Hash-Based Cluster Storage System” Network and Parallel
Computing, 2009 Sixth IFIP International Conference.

(Continued)

Primary Examiner — Joseph Kudirka
(74) Attorney, Agent, or Firm — Griffiths & Seaton PLLC

(57) ABSTRACT

For efficient handing of semi-asynchronous RAID write fail-
ures using a processor device in a computing environment, a
write operation is committed on a primary copy of data on a
primary entity while sending the data to a secondary entity
while awaiting an acknowledgment by the secondary entity.
The acknowledgment indicates to the primary entity that
metadata for the write operation has arrived at the secondary
entity without necessarily indicating the data has arrived at
the secondary entity. The acknowledgment is sent from the
secondary entity regardless of a write failure and allowing the
secondary entity to perform a recovery operation if a write
failure occurs.

20 Claims, 4 Drawing Sheets

Far. N 302

i BEGIN

COMIMIT A WRITE OPERATICN ON A PRIMARY COPY OF DATA ON
A PRIMARY ENTITY WHILE SENDING THE DATATO A SECONDARY
ENTITY WHILE AWAITING AN ACKNOWLEDGMENT BY
THE SECONDARY ENTITY

e 304

v

SEND THE ACKNOWLEDGMENT FROM THE SECONDARY ENTITY
REGARDLESS OF A WRITE FAILURE ANDI ALLOW THE SECONDARY
ENTITY TO PERFORM A RECOVERY OPERATION IF A WRITE
FAILURE QCCURS

308
enp

US 9,304,865 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2007/0073985 Al*

2007/0195692 Al
2007/0220059 Al
2015/0269039 Al*

3/2007 Wilkes GOGF 11/2074
711/161

8/2007 Hagglund et al.

9/2007 Luetal.

9/2015 Akirav GOGF 11/2007
714/4.11

OTHER PUBLICATIONS

Wood et al., “PipeCloud: using causality to overcome speed-of-light
delays in cloud-based disaster recovery” 13 pages, Proceedings of the
2nd ACM Symposium on Cloud Computing (SOCC ’11), ACM, New
York, NY.

* cited by examiner

US 9,304,865 B2

Sheet 1 of 4

Apr. 5, 2016

U.S. Patent

ww mmm//
WHLSAS WELSAS
LEREREI) HALNdINCT

H

%

AYOMLIN

MNOILYIINTININGD

om‘\\\

e - --rs s s mmmmmmmmmmmmEmmEEE T
i i
M 97 71 !

i
E / ./ §
i i
m I0IAIC _
M AHOGINGIN ADVHOLS w
i SSVIA i
i i
i 4 i
; i
t 1
L LY0d y . LINN SNISSI0Yd “
i NOILLYOINNIWINGD TYHINGS 1
i i
; i
T S 1

21 77

01

U.S. Patent Apr. 5, 2016 Sheet 2 of 4 US 9,304,865 B2
200
/210 /220 /225
HOST HOST HOST
260
NETWORK
E CONTROL SWITCH |
241 MICRG B MEMORY
Lo PROCESSOR J A
BUFFERS b-w 243 e
244 J) / ’
aac 282 216
| CACHE L2
’ READ/wRiTE | [ACKNOWLEDGEMENT
/ A o
- OPERATION MODULE 257
operaTION L7 HANDLER e Py
SOFTWARE / DATA ALLOCATION R
255 TABLE MODULE 250
ERROR/FAILURE
259 RECOVERY : A
R ANGES v ECOVER ?RlMARWSECONDARY\ ‘
MODULE jf NODE MODULE 963
261
STORAGE CONTROLLER 240
w \\w/ \\w
VOLUME 232a {VOLM\AE 232b iVOLhME 238 E
VOLUME 234
VOLUME 238 [\/OLUME 2405
TN N

FIG. 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 4 US 9,304,865 B2

300
302

COMMIT A WRITE OPERATION ON A PRIMARY COPY GF DATA ON
APRIMARY ENTITY WHILE SENDING THE DATATO A SECONDARY 304
ENTITY WHILE AWAITING AN ACKNOWLEDGMENT BY

THE SECONDARY ENTITY

v

SEND THE ACKNOWLEDGMENT FROM THE SECONDARY ENTITY

REGARDLESS OF A WRITE FAILURE AND ALLOW THE SECONDARY 306

ENTITY TO PERFORM A RECOVERY OPERATION IF A WRITE
FAILURE QCCURS

308

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 4 US 9,304,865 B2

400

COMMIT A WRITE OPERATION ON A PRIMARY COPY OF DATA ON A PRIMARY ENTITY
WHILE SENDING THE DATA TO A SECONDARY ENTITY WHILE AWAITING AN -
ACKNOWLEDGMENT BY THE SECONDARY ENTITY

¥

INDICATE TO THE PRIMARY ENTITY, BY THE ACKNOWLEDGMENT, THAT METADATA 406
FOR THE WRITE OPERATION HAS ARRIVED AT THE SECONDARY ENTITY WITHOUT 7
NECESSARILY INDICATING THE DATA HAS ARRIVED AT THE SECONDARY ENTITY

/A;ERM%N £ ~408

IF THE SECONDARY ENTITY FALS ™ NO
TO COMMIT THE DATA ON THE T
SECONDARY ENTITY?

-A04

FAIL THE WRITE OPERATION ON THE SECONDARY ENTITY,
AND/OR TRIGGER A REBUILD PROCESS ON THE SECONDARY
ENTITY TO COMPLETE A FULL REDUNDANT STATE OF THE

DATA ON THE SECONDARY ENTITY ,{—————————-

| BRI

/ \\<412
_—"1F A DOUBLE CONCURRENT .
" WRITE FAILURE OCCURS WHERE THE \\\
NO " SECONDARY ENTITY IS PERFORMING A RETRY OF >
. THE WRITE GPERATION AND THE PRIMARY
T COPY OF THE DATA ON THE PREMARY/
ENTITY 15 mV

YES

410

FORCE THE SECONDARY ENTITY TO BECOME A NEW PRIMARY ENTITY AND/OR
RETURN A READ OPERATION FAILURE BY THE SECONDARY ENTITY TO AN B
APPLICATION WHEN A READ OPERATION OF A STALE DATA BLOCK ARRIVES

v

SET A MARK ON A DATA ALLOCATION TABLE DURING THE WRITE OPERATION /415
ON THE SECONDARY ENTITY

4

DELAYING A PROCESSING OPERATION OF THE WRITE FAILURE OF THE . ~418
SECONDARY COPY
SEND THE ACKNOWLEDGMENT FROM THE SECONDARY ENTITY REGARDLESS 490
j-

OF & WRITE FAILURE AND ALLOW THE SECONDARY ENTITY TO PERFORM
A RECOVERY OPERATION IF A WRITE FAILURE OCCURS

US 9,304,865 B2

1
EFFICIENT HANDING OF
SEMI-ASYNCHRONOUS RAID WRITE
FAILURES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to computers, and
more particularly to efficient handing of semi-asynchronous
RAID write failures in a computing environment.

2. Description of the Related Art

In today’s society, computer systems are commonplace.
Computer systems may be found in the workplace, at home,
or at school. A data processing system typically includes a
processor subsystem having at least one central processing
unit (CPU), an input/output (I/O) subsystem, a memory sub-
system and a bus subsystem. The memory subsystem of the
data processing system typically includes a data storage sys-
tem having a controller connected to a back end storage. The
controller controls the flow of data between the data process-
ing system and the back end storage. The controller includes
a cache memory that is typically implemented by static
memories. During operation, the cache memory serves as a
temporary store for data associated with a write /O request.

These data processing systems may include data storage
systems, or disk storage systems, to process and store data.
Large amounts of data have to be processed daily and the
current trend suggests that these amounts will continue being
ever-increasing in the foreseeable future. For the most part,
computing systems face a significant challenge to meet the
increasingly stringent reliability demands and failure toler-
ances imposed by many software applications. In particular,
responses to I/O requests in such data storage systems can be
poorly defined in the wake of a failure that disrupts the pro-
cessing of /O requests. Accordingly, it would be desirable to
improve the failure tolerance of data storage systems without
compromising reliability and data availability.

SUMMARY OF THE DESCRIBED
EMBODIMENTS

In one embodiment, a method is provided for efficient
handing of semi-asynchronous RAID write failures, ina com-
puting environment. In one embodiment, by way of example
only, a write operation is committed on a primary copy of data
on a primary entity while sending the data to a secondary
entity while awaiting an acknowledgment by the secondary
entity. The acknowledgment indicates to the primary entity
that metadata for the write operation has arrived at the sec-
ondary entity without necessarily indicating the data has
arrived at the secondary entity. The acknowledgment is sent
from the secondary entity regardless of a write failure and
allowing the secondary entity to perform arecovery operation
if a write failure occurs.

In another embodiment, a computer system is provided for
efficient handing of semi-asynchronous RAID write failures,
in a computing environment. The computer system includes a
computer-readable medium and at least one processor in
operable communication with the computer-readable
medium. The processor commits a write operation on a pri-
mary copy of data on a primary entity while sending the data
to a secondary entity while awaiting an acknowledgment by
the secondary entity. The acknowledgment indicates to the
primary entity that metadata for the write operation has
arrived at the secondary entity without necessarily indicating
the data has arrived at the secondary entity. The acknowledg-
ment is sent from the secondary entity regardless of a write

10

15

20

25

30

35

40

45

50

55

60

65

2

failure and allowing the secondary entity to perform a recov-
ery operation if a write failure occurs.

In a further embodiment, a computer program product is
provided for efficient handing of semi-asynchronous RAID
write failures, in a computing environment. The computer-
readable storage medium has computer-readable program
code portions stored thereon. The computer-readable pro-
gram code portions include a first executable portion that
commits a write operation on a primary copy of data on a
primary entity while sending the data to a secondary entity
while awaiting an acknowledgment by the secondary entity.
The acknowledgment indicates to the primary entity that
metadata for the write operation has arrived at the secondary
entity without necessarily indicating the data has arrived at
the secondary entity. The acknowledgment is sent from the
secondary entity regardless of a write failure and allowing the
secondary entity to perform a recovery operation if a write
failure occurs.

In addition to the foregoing exemplary method embodi-
ment, other exemplary system and computer product embodi-
ments are provided and supply related advantages. The fore-
going summary has been provided to introduce a selection of
concepts in a simplified form that are further described below
in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter. The claimed
subject matter is not limited to implementations that solve any
or all disadvantages noted in the background.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the invention
briefly described above will be rendered by reference to spe-
cific embodiments that are illustrated in the appended draw-
ings. Understanding that these drawings depict embodiments
of the invention and are not therefore to be considered to be
limiting of its scope, the invention will be described and
explained with additional specificity and detail through the
use of the accompanying drawings, in which:

FIG. 1 is a block diagram illustrating a computing system
environment having an example storage device in which
aspects of the present invention may be realized;

FIG. 2 is a block diagram illustrating a hardware structure
of'data storage system in a computer system in which aspects
of the present invention may be realized;

FIG. 3 is a flowchart illustrating an exemplary method for
efficient handing of semi-asynchronous RAID write failures
in which aspects of the present invention may be realized; and

FIG. 4 is a flowchart illustrating an additional exemplary
method for efficient handing of semi-asynchronous RAID
write failures in which aspects of the present invention may be
realized.

DETAILED DESCRIPTION OF THE DRAWINGS

As mentioned above, large amounts of data have to be
processed daily and the current trend suggests that these
amounts will continue being ever-increasing in the foresee-
able future. To handle such large amounts of data, cluster-
computing architectures have recently advanced such that
clusters of computers are now being used in the academic and
commercial community to compute solutions to complex
problems. Cluster computing offers three distinct features for
scientific research and corporate computing: high perfor-
mance, high availability, and less cost than dedicated super

US 9,304,865 B2

3

computers. Cluster computing comprises a multiplicity of
conventional workstations, servers, PCs, and other computer
systems interconnected by a high-speed network to provide
computing services to a multiplicity of clients. Each com-
puter system (PC, workstation, server, mainframe, etc.) is a
node of the cluster. The cluster integrates the resources of all
of'these nodes and presents to a user, and to user applications,
a Single System Image (SSI). The resources, memory, stor-
age, processors, etc. of each node are combined into one large
set of resources. To a user or user application, access to the
resources is transparent and the resources are used as though
present in a single computer system.

The cluster computing architectures may include the use of
redundant array of independent disks (RAID). RAID storage
uses multiple disks in order to provide fault tolerance, to
improve overall performance, and to increase storage capac-
ity in a system. With RAID technology, data can be mirrored
onone or more other disks in the same array, so thatifone disk
fails, the data is preserved. Thanks to a technique known as
“striping,” RAID also offers the option of reading or writing
to more than one disk at the same time in order to improve
performance. In this arrangement, sequential data is broken
into segments, which are sent to the various disks in the array,
speeding up throughput. Also, because a RAID array uses
multiple disks that appear to be a single device, it can often
provide more storage capacity than a single disk. RAID
devices use many different architectures, depending on the
desired balance between performance and fault tolerance.
These architectures are called “levels.” Standard RAID levels
include the following: Level O (striped disk array without
fault tolerance), Level 1 (mirroring and duplexing), Level 2
(error-correcting coding), Level 3 (bit-interleaved parity),
Level 4 (dedicated parity drive), Level 5 (block interleaved
distributed parity), Level 6 (independent data disks with
double parity) and Level 10 (a stripe of mirrors). Some
devices use more than one level in a hybrid or nested arrange-
ment, and some vendors also offer non-standard proprietary
RAID levels.

For the most part, computing systems, including the cluster
computing architectures, face a significant challenge to meet
the increasingly stringent reliability demands and failure tol-
erances imposed by many software applications. In particu-
lar, responses to /O requests in such data storage systems can
be poorly defined in the wake of a failure that disrupts the
processing of 1/O requests. Accordingly, a need exists to
improve the failure tolerance and/or errors resulting during
read/write operation of data storage systems without compro-
mising reliability and data availability.

For example, data associated with an input/output (1/O)
request from host data processing system may be stored in a
data storage system. An acknowledgement (ACK) may be
sent from a controller to host data processing system once the
data associated with write I/O request has been stored in the
data storage system. Sometimes, write operations between
host data processing system, controller, and/or the data stor-
age system may be disrupted by an event failure. Examples of
an event failure may include, without limitation, read/write
operation failure, a host server failure, a kernel failure, an
application failure, a storage controller failure, a network
failure, etc. Any of the event failures may be associated with
a power failure.

Moreover, writing to RAID storage devices, which are
configured for higher resiliency and redundancy, implies that
any write operation is performed to at least two different
physical drives. Being a high-availability/high reliability
storage system implies that the ACK is sent to ahost only after
the storage system stores at least two copies of the data on

10

15

20

25

30

35

40

45

50

55

60

65

4

independent failure boundaries to eliminate any single point
of failure (SPOF) that may lead to a data loss. Hence, a failure
to write to either the primary copy and/or the secondary one,
results in a write failure, which is returned to the host’s
application. The handling of at least two concurrent failures is
outside the scope of the storage system design point, (other
than the RAID6, which may handle two concurrent failures.)
Upon receiving an error (i.e. the lack of an ACK) the host can
reissue the write command or, (though a less dependable
recovery but still an acceptable recovery method per SCSI
standards) read the locations off the storage that the failed
operation attempted to write, and based on the contents read
back, decide on the next actions. Partial writes failures, where
awrite to just one copy fails, put the burden of recovery on the
hosts. However, internal storage recovery attempts in the
storage system can and do extend the write latency, as they are
done in the data-path, and may also cause the applications to
time-out and fail altogether. Had the storage system been able
to conduct the recovery operation on the secondary storage
device (e.g., secondary node, secondary copy, and/or second-
ary disk, etc.) outside the data-path, many recoverable issues
in the storage could be resolved internally without exposing
them to the hosts’ applications and also reduce the write
latency for the good path (when there are no problems) and
for the bad path (when the initial write on secondary fails).
Furthermore, the storage system can give more efficient and
faster answers, such as failing a component sooner. In so
doing, the extended period of storage system degradation
(e.g., such as when a problem is recognized only after numer-
ous failing hosts’ level recovery attempts that are just succes-
sion of rewrites) is reduced. Thus, a need exists to both
improve the storage performance and increase the storage
system resiliency. By ensuring data redundancy at all times
and through, assuming more responsibility either for autono-
mous self-healing or quicker recognition of an unrecoverable
problem and failing the misbehaving component faster, the
storage systems may be enhanced.

To address the challenges discussed above, in one embodi-
ment, by way of example only, the present invention provides
a solution for efficient handing of semi-asynchronous RAID
write failures, in a computing environment. In one embodi-
ment, by way of example only, a write operation is committed
on a primary copy of data on a primary entity while sending
the data to a secondary entity while awaiting an acknowledg-
ment by the secondary entity. The acknowledgment indicates
to the primary entity that metadata for the write operation has
arrived at the secondary entity without necessarily indicating
the data has arrived at the secondary entity. The acknowledg-
ment is sent from the secondary entity regardless of a write
failure and allowing the secondary entity to perform a recov-
ery operation if a write failure occurs.

If the secondary entity fails to commit the data on the
secondary entity, the write operation may be failed on the
secondary entity, and/or a rebuild process on the secondary
entity is triggered to complete a full redundant state of the
data on the secondary entity.

If a double concurrent write failure occurs where the sec-
ondary entity is performing a retry of the write operation and
the primary copy of the data on the primary entity is lost, the
present invention may perform at least one of forcing the
secondary entity to become a new primary entity, and/or
returning a read operation failure by the secondary entity to an
application when a read operation of a stale data block arrives.

A mark is set on a data allocation table during the write
operation on the secondary entity. The data block is marked as
stale in the data allocation table prior to the acknowledgment
being sent by the secondary entity, and the acknowledgment

US 9,304,865 B2

5

is used for the write operation to return a success notification
to the primary entity prior to committing the data on the
secondary entity. Internal recovery actions are allowed to be
attempted and/or a new write operation is performed/ex-
ecuted to a stale data block for turning the stale data block to
a valid data block by delaying a processing operation of the
write failure of the secondary copy. The acknowledgment is
sent from the secondary entity to the primary entity after the
data block is marked as stale.

Turning now to FIG. 1, exemplary architecture 10 of a
computing system environment is depicted. The computer
system 10 includes central processing unit (CPU) 12, which is
connected to communication port 18 and memory device 16.
The communication port 18 is in communication with a com-
munication network 20. The communication network 20 and
storage network may be configured to be in communication
with server (hosts) 24 and storage systems, which may
include storage devices 14. The storage systems may include
hard disk drive (HDD) devices, solid-state devices (SSD) etc.,
which may be configured in a redundant array of independent
disks (RAID). The operations as described below may be
executed on storage device(s) 14, located in system 10 or
elsewhere and may have multiple memory devices 16 work-
ing independently and/or in conjunction with other CPU
devices 12. Memory device 16 may include such memory as
electrically erasable programmable read only memory (EE-
PROM) or a host of related devices. Memory device 16 and
storage devices 14 are connected to CPU 12 via a signal-
bearing medium. In addition, CPU 12 is connected through
communication port 18 to a communication network 20, hav-
ing an attached plurality of additional computer host systems
24. In addition, memory device 16 and the CPU 12 may be
embedded and included in each component of the computing
system 10. Each storage system may also include separate
and/or distinct memory devices 16 and CPU 12 that work in
conjunction or as a separate memory device 16 and/or CPU
12.

FIG. 2 is an exemplary block diagram 200 showing a
hardware structure of a data storage system in a computer
system according to the present invention. Host computers
210, 220, 225, are shown, each acting as a central processing
unit for performing data processing as part of a data storage
system 200. The cluster hosts/nodes (physical or virtual
devices), 210, 220, and 225 may be one or more new physical
devices or logical devices to accomplish the purposes of the
present invention in the data storage system 200. In one
embodiment, by way of example only, a data storage system
200 may be implemented as IBM® System Storage™
DS8000™. A Network connection 260 may be a fibre channel
fabric, a fibre channel point to point link, a fibre channel over
ethernet fabric or point to point link, a FICON or ESCON 1/O
interface, any other I/O interface type, a wireless network, a
wired network, a LAN, a WAN, heterogeneous, homoge-
neous, public (i.e. the Internet), private, or any combination
thereof. The hosts, 210, 220, and 225 may be local or distrib-
uted among one or more locations and may be equipped with
any type of fabric (or fabric channel) (not shown in FIG. 2) or
network adapter 260 to the storage controller 240, such as
Fibre channel, FICON, ESCON, Ethernet, fiber optic, wire-
less, or coaxial adapters. Data storage system 200 is accord-
ingly equipped with a suitable fabric (not shown in FIG. 2) or
network adaptor 260 to communicate. Data storage system
200 is depicted in FIG. 2 comprising storage controllers 240
and cluster hosts 210, 220, and 225. The cluster hosts 210,
220, and 225 may include cluster nodes.

To {facilitate a clearer understanding of the methods
described herein, storage controller 240 is shown in FIG. 2 as

10

20

25

30

40

45

55

60

65

6

a single processing unit, including a microprocessor 242,
system memory 243 and nonvolatile storage (“NVS”) 216. It
is noted that in some embodiments, storage controller 240 is
comprised of multiple processing units, each with their own
processor complex and system memory, and interconnected
by a dedicated network within data storage system 200. Stor-
age 230 (labeled as 230a, 2305, and 2307 in FIG. 3) may be
comprised of one or more storage devices, such as storage
arrays, which are connected to storage controller 240 (by a
storage network) with one or more cluster hosts 210, 220, and
225 connected to each storage controller 240.

In some embodiments, the devices included in storage 230
may be connected in a loop architecture. Storage controller
240 manages storage 230 and facilitates the processing of
write and read requests intended for storage 230. The system
memory 243 of storage controller 240 stores program instruc-
tions and data, which the processor 242 may access for
executing functions and method steps of the present invention
for executing and managing storage 230 as described herein.
In one embodiment, system memory 243 includes, is in asso-
ciation with, or is in communication with the operation soft-
ware 250 for performing methods and operations described
herein. As shown in FIG. 2, system memory 243 may also
include or be in communication with a cache 245 for storage
230, also referred to herein as a “cache memory”, for bufter-
ing “write data” and “read data”, which respectively refer to
write/read requests and their associated data. In one embodi-
ment, cache 245 is allocated in a device external to system
memory 243, yet remains accessible by microprocessor 242
and may serve to provide additional security against data loss,
in addition to carrying out the operations as described in
herein.

In some embodiments, cache 245 is implemented with a
volatile memory and nonvolatile memory and coupled to
microprocessor 242 via a local bus (not shown in FIG. 2) for
enhanced performance of data storage system 200. The NVS
216 included in data storage controller is accessible by micro-
processor 242 and serves to provide additional support for
operations and execution of the present invention as described
in other figures. The NVS 216, may also referred to as a
“persistent” cache, or “cache memory” and is implemented
with nonvolatile memory that may or may not utilize external
power to retain data stored therein. The NVS may be stored in
and with the cache 245 for any purposes suited to accomplish
the objectives of the present invention. In some embodiments,
a backup power source (not shown in FIG. 2), such as a
battery, supplies NVS 216 with sufficient power to retain the
data stored therein in case of power loss to data storage
system 200. In certain embodiments, the capacity of NVS 216
is less than or equal to the total capacity of cache 245.

Storage 230 may be physically comprised of one or more
storage devices, such as storage arrays. A storage array is a
logical grouping of individual storage devices, such as a hard
disk. In certain embodiments, storage 230 is comprised of a
JBOD (Just a Bunch of Disks) array or a RAID (Redundant
Array of Independent Disks) array. A collection of physical
storage arrays may be further combined to form a rank, which
dissociates the physical storage from the logical configura-
tion. The storage space in a rank may be allocated into logical
volumes, which define the storage location specified in a
write/read request.

In one embodiment, by way of example only, the storage
system as shown in FIG. 2 may include a logical volume, or
simply “volume,” may have different kinds of allocations.
Storage 230a, 2305 and 2307 are shown as ranks in data
storage system 200, and are referred to herein as rank 230aq,
2305 and 2307. Ranks may be local to data storage system

US 9,304,865 B2

7

200, or may be located at a physically remote location. In
other words, a local storage controller may connect with a
remote storage controller and manage storage at the remote
location. Rank 230a is shown configured with two entire
volumes, 234 and 236, as well as one partial volume 232a.
Rank 2305 is shown with another partial volume 2325. Thus
volume 232 is allocated across ranks 230a and 2305. Rank
230 is shown as being fully allocated to volume 238—that is,
rank 230z refers to the entire physical storage for volume 238.
From the above examples, it will be appreciated that a rank
may be configured to include one or more partial and/or entire
volumes. Volumes and ranks may further be divided into
so-called “tracks,” which represent a fixed block of storage. A
track is therefore associated with a given volume and may be
given a given rank.

The storage controller 240 may include a read/write opera-
tion handler 255, an acknowledgment module 257, a data
allocation table module 259, an error/failure recovery module
261, and a primary/secondary node module 263. The read/
write operation handler 255, the acknowledgment module
257, the data allocation table module 259, the error/failure
recovery module 261, and the primary/secondary node mod-
ule 263 may work in conjunction with each and every com-
ponent of the storage controller 240, the hosts 210, 220, 225,
and storage devices 230. The read/write operation handler
255, the acknowledgment module 257, the data allocation
table module 259, the error/failure recovery module 261, and
the primary/secondary node module 263 may be structurally
one complete module or may be associated and/or included
with other individual modules. The read/write operation han-
dler 255, the acknowledgment module 257, the data alloca-
tion table module 259, the error/failure recovery module 261,
and the primary/secondary node module 263, may also be
located in the cache 245 or other components.

The storage controller 240 includes a control switch 241
for controlling the fiber channel protocol to the host comput-
ers 210, 220, 225, a microprocessor 242 for controlling all the
storage controller 240, a nonvolatile control memory 243 for
storing a microprogram (operation software) 250 for control-
ling the operation of storage controller 240, data for control,
cache 245 for temporarily storing (buffering) data, and buft-
ers 244 for assisting the cache 245 to read and write data, a
control switch 241 for controlling a protocol to control data
transfer to or from the storage devices 230, the read/write
operation handler 255, the acknowledgment module 257, the
data allocation table module 259, the error/failure recovery
module 261, and the primary/secondary node module 263, in
which information may be set. Multiple buffers 244 may be
implemented with the present invention to assist with the
operations as described herein. In one embodiment, the clus-
ter hosts/nodes, 210, 220, 225 and the storage controller 240
are connected through a network adaptor (this could be a fibre
channel) 260 as an interface i.e., via at least one switch called
“fabric”

In one embodiment, the host computers or one or more
physical or virtual devices, 210, 220, 225 and the storage
controller 240 are connected through a network (this could be
a fibre channel) 260 as an interface i.e., via at least one switch
called “fabric.” In one embodiment, the operation of the sys-
tem shown in FIG. 2 will be described. The microprocessor
242 may control the memory 243 to store command informa-
tion from the host device (physical or virtual) 210 and infor-
mation for identifying the host device (physical or virtual)
210. The control switch 241, the buffers 244, the cache 245,
the operating software 250, the microprocessor 242, memory
243, NVS 216, read/write operation handler 255, the
acknowledgment module 257, the data allocation table mod-

10

15

20

25

30

35

40

45

50

55

60

65

8

ule 259, the error/failure recovery module 261, and the pri-
mary/secondary node module 263 are in communication with
each other and may be separate or one individual compon-
ent(s). Also, several, if not all of the components, such as the
operation software 250 may be included with the memory
243. Each of the components within the devices shown may
be linked together and may be in communication with each
other for purposes suited to the present invention.

As mentioned above, the read/write operation handler 255,
the acknowledgment module 257, the data allocation table
module 259, the error/failure recovery module 261, and the
primary/secondary node module 263, may also be located in
the cache 245 or other components. As such, one or more of
the read/write operation handler 255, the acknowledgment
module 257, the data allocation table module 259, the error/
failure recovery module 261, and the primary/secondary node
module 263, maybe used as needed, based upon the storage
architecture and users preferences.

As described herein, the present invention provides a solu-
tion for efficient handing of semi-asynchronous RAID write
failures. In one embodiment, the present invention is
restricted to a RAID storage device type architecture, which
serves all of its READ I/O from its primary copy only. In an
alternative embodiment, the present invention is not restricted
to RAID storage device type architecture and may be imple-
mented in a variety of computing type architectures. For
example, one computer architecture (e.g., IBM®) design
point allows for an elegant and simple implementation of the
described herein. Under one computer architecture (e.g.,
IBM®) design, the primary copy is excluded from the com-
puting system with the secondary copy becoming a new pri-
mary copy and the rest of the recovery will create a new
secondary copy off the new primary copy (e.g., the converted
secondary copy). The focus of the description herein is han-
dling of a write failure on the secondary copy alone and
relying on that design to address all other issues.

Because of historical reasons and the need to be backward
compatible with storage behavior, when RAID systems are
based on single disks, the RAID systems seem to take on a
pessimistic approach and, cater best to failures so that a fail-
ure is recognized and handled as soon as possible. A write
failure is returned to the host after exhausting internal re-write
operations, which are transparent to the hosts. Thus the
present invention provides a solution to handle a good path
(e.g., a non-failed path) and storage problems internally, and
if the system cannot handle and fix the failures, the present
invention reports those failures to the application layer at the
last possible time (e.g., using a timer, a predetermined time,
and/or calculation). Internal recovery procedures are pro-
vided to address write-failures as long as the failed writes are
not consumed through a read. To do so, in one embodiment,
the present invention commits a write on the primary copy
and sends the data to the secondary entity awaiting an ACK
from the secondary entity. The ACK, as described herein,
means that the metadata for the write operation (specifically
the write addresses) had arrived at the other end (e.g., the
secondary entity), but does not mean that the data itself was
successfully committed there. In other words, the data may
have and/or may not have been successfully committed. The
present invention allows for the secondary node to try recov-
ery actions without negatively affecting the write latency,
which will be acknowledged as soon as the primary receives
the ACK from the secondary. If the secondary node fails to
commit the data on its end, the secondary node can fail the
relevant component (e.g., a disk and/or the entire module) and
trigger a rebuild process that will return the whole storage into

US 9,304,865 B2

9

a full redundant state when that rebuild is complete (e.g.,
rebuild on the secondary node).

In the event of a double concurrent failure, where the
second node is in the midst of a write re-try and/or other
plausible recovery actions and/or the primary node/copy is
lost thereby forcing the secondary entity (e.g., secondary
node) into becoming the new primary entity (e.g., primary
node), the secondary entity may return a read failure to a
hosts” applications when aread of a stale block arrives, before
any successful write was made to the secondary entity. The
handling of the write error of the secondary copy is delayed to
the very last possible time, allowing for internal recovery
actions to be attempted and/or for a fresh new host write
operation to be written to the stale block thereby turning the
block to be a valid block. It should be noted that if manual
intervention is required to recover stale blocks, the secondary
node has all those uncommitted writes waiting as they were
sent to it and were received successfully based on the ACK it
had sent to the primary early on.

In one embodiment, each data storage system/module
(which controls a set of storage systems such as disks or other
type of storage devices) have a fixed stale table. For example,
in one computer architecture (e.g., IBM® and/or the XIV®
GEN-3) have 12 3 TB disks in each module. Half of the disks’
space is used for secondary copies. Assuming the granularity
that is tracked is of 4 KB, then the size of the stale table is
around 100 MB or 200 MB. As the table is of fix size, there are
no issues with data allocation schemes and latencies. In one
embodiment, a bit is set to either “on” or “off” and such
setting should always succeed. If the operation doesn’t suc-
ceed, such failure indicates a significant problem with the
data storage system/module (not merely a disk) and calls for
atimely failing of the respective module so that the hosts will
be able to choose alternate path. This enables the host to be
more efficient and fast for their work and, in doing so, mini-
mizes the performance degradation experienced currently,
when the recognition of an interface module problems takes
too long.

In one embodiment, by way of example only, the secondary
node sends the ACK to the primary entity right after the
secondary node marks the respective block as stale. The semi-
asynchronous ACK allows for the write operation to return a
success to the host before the data is committed on the sec-
ondary entity. This provides for faster write operation, yet it
doesn’t expose the host to any data inconsistency event, even
if there are concurrent double failures. If, considering a worst-
case scenario, there is a failure of a read of a stale block, if an
intervention operation is required, all data that would have
been on the secondary node is still available based on use of
the operations described herein of the present invention. In
case there are number of writes targeting the very same data
block, all pending writes are aborted so that the latest data
ends up written.

FIG. 3 is a flowchart illustrating an exemplary method 300
for efficient handing of semi-asynchronous RAID write fail-
ures in which aspects of the present invention may be real-
ized. The method 300 begins (step 302) by committing a write
operation on a primary copy of data on a primary entity while
sending the data to a secondary entity while awaiting an
acknowledgment by the secondary entity (step 304). The
acknowledgment indicates to the primary entity that metadata
for the write operation has arrived at the secondary entity
without necessarily indicating the data has arrived at the
secondary entity. The acknowledgment is sent from the sec-
ondary entity regardless of a write failure and allowing the
secondary entity to perform a recovery operation if a write
failure occurs (step 306). The method 300 ends (step 308).

20

30

35

40

45

10

FIG. 4 is a flowchart illustrating an additional exemplary
method 400 for efficient handing of semi-asynchronous
RAID write failures in which aspects of the present invention
may be realized. The method 400 begins (step 402) by com-
mitting a write operation on a primary copy of data on a
primary entity while sending the data to a secondary entity
while awaiting an acknowledgment by the secondary entity
(step 404). The method 400 indicates to the primary entity by
the acknowledgment that metadata for the write operation has
arrived at the secondary entity without necessarily indicating
the data has arrived at the secondary entity (step 406). The
method 400 determines if the secondary entity fails to commit
the data on the secondary entity (step 408). If yes, the method
400 fails the write operation on the secondary entity, and/or
triggers a rebuild process on the secondary entity to complete
a full redundant state of the data on the secondary entity (step
410) and then moves to step 416. If no, the method 400
determines if a double concurrent write failure occurs where
the secondary entity is performing a retry of the write opera-
tion and the primary copy of the data on the primary entity is
lost (step 412). If yes, the method 400 either forces the sec-
ondary entity to become a new primary entity and/or returns
a read operation failure by the secondary entity to an appli-
cation when a read operation of a stale data block arrives (step
414) and then moves to step 416. If no, the method 400 sets a
mark on a data allocation table during the write operation on
the secondary entity (step 416). The method 400 allows inter-
nal recovery actions to be attempted and/or a new write opera-
tion to be performed on a stale data block for turning the stale
data block to a valid data block by delaying a processing
operation of the write failure of the secondary copy (step
418). The method 400 sends the acknowledgment from the
secondary entity regardless of a write failure and allow the
secondary entity to perform a recovery operation if a write
failure occurs (step 420). In one embodiment, the acknowl-
edgment is sent from the secondary entity to the primary
entity after the data block is marked as stale. The method 400
ends (step 422).

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, the present
invention may be a system, a method, and/or a computer
program product. The computer program product may
include a computer readable storage medium (or media) hav-
ing computer readable program instructions thereon for caus-
ing a processor to carry out aspects of the present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-

US 9,304,865 B2

11

magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider). In some embodiments, electronic circuitry including,
for example, programmable logic circuitry, fieldprogram-
mable gate arrays (FPGA), or programmable logic arrays
(PLA) may execute the computer readable program instruc-
tions by utilizing state information of the computer readable
program instructions to personalize the electronic circuitry, in
order to perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which

30

40

45

50

12

implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical func-
tion(s). In some alternative implementations, the functions
noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

What is claimed is:

1. A method for efficient handling of semi-asynchronous
RAID write failures using a processor device in a computing
environment, the method comprising:

committing a write operation on a primary copy of data on

a primary entity while sending the data to a secondary
entity while awaiting an acknowledgment by the sec-
ondary entity, wherein the acknowledgment indicates to
the primary entity that metadata for the write operation
has arrived at the secondary entity with or without indi-
cating that the data has committed on the secondary
entity; and

sending the acknowledgment from the secondary entity

regardless of a write failure and allowing the secondary
entity to perform a recovery operation if a write failure
occurs.

2. The method of claim 1, further including, if the second-
ary entity fails to commit the data on the secondary entity,
performing at least one of:

failing the write operation on the secondary entity, and

triggering a rebuild process on the secondary entity to

complete a full redundant state of the data on the sec-
ondary entity.

3. The method of claim 2, further including, if a double
concurrent write failure occurs where the secondary entity is
performing aretry of the write operation and the primary copy
of'the data on the primary entity is lost, performing each one
of:

forcing the secondary entity to become a new primary

entity, and

returning a read operation failure by the secondary entity to

an application when a read operation of a stale data block
arrives.

4. The method of claim 3, further including allowing for
one of internal recovery actions to be attempted and perform-
ing a new write operation to the stale data block for turning the

US 9,304,865 B2

13

stale data block to a valid data block by delaying a processing
operation of the write failure of the secondary copy.

5. The method of claim 1, further including setting a mark
on a data allocation table during the write operation on the
secondary entity.

6. The method of claim 5, further including performing at
least one of:

marking the data block as stale in the data allocation table

prior to the acknowledgment being sent by the second-
ary entity, and

using the acknowledgment for the write operation to return

a success notification to the primary entity prior to com-
mitting the data on the secondary entity.

7. The method of claim 6, further including sending the
acknowledgment from the secondary entity to the primary
entity after the data block is marked as stale.

8. A system for efficient handling of semi-asynchronous
RAID write failures in a computing environment, the system
comprising:

at least one processor device operable in the computing

environment, wherein the at least one processor device:

commits a write operation on a primary copy of data on
aprimary entity while sending the data to a secondary
entity while awaiting an acknowledgment by the sec-
ondary entity, wherein the acknowledgment indicates
to the primary entity that metadata for the write opera-
tion has arrived at the secondary entity with or without
indicating that the data has committed on the second-
ary entity, and

sends the acknowledgment from the secondary entity
regardless of a write failure and allowing the second-
ary entity to perform a recovery operation if a write
failure occurs.

9. The system of claim 8, wherein the at least one processor
device, if the secondary entity fails to commit the data on the
secondary entity, performs at least one of:

failing the write operation on the secondary entity, and

triggering a rebuild process on the secondary entity to

complete a full redundant state of the data on the sec-
ondary entity.

10. The system of claim 9, wherein the at least one proces-
sor device, if a double concurrent write failure occurs where
the secondary entity is performing a retry of the write opera-
tion and the primary copy of the data on the primary entity is
lost, performs each one of:

forcing the secondary entity to become a new primary

entity, and

returning a read operation failure by the secondary entity to

anapplication when a read operation of a stale datablock
arrives.

11. The system of claim 10, wherein the at least one pro-
cessor device allows for one of internal recovery actions to be
attempted and performing a new write operation to the stale
data block for turning the stale data block to a valid data block
by delaying a processing operation of the write failure of the
secondary copy.

12. The system of claim 8, wherein the at least one proces-
sor device sets a mark on a data allocation table during the
write operation on the secondary entity.

13. The system of claim 12, wherein the at least one pro-
cessor device performs at least one of:

marking the data block as stale in the data allocation table

prior to the acknowledgment being sent by the second-
ary entity, and

10

15

20

25

30

35

40

45

50

55

60

14

using the acknowledgment for the write operation to return
a success notification to the primary entity prior to com-
mitting the data on the secondary entity.

14. The system of claim 13, wherein the at least one pro-
cessor device sends the acknowledgment from the secondary
entity to the primary entity after the data block is marked as
stale.

15. A computer program product for efficient handling of
semi-asynchronous RAID write failures using a processor
device, the computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable program code portions stored therein, the
computer-readable program code portions comprising:

a first executable portion that commits a write operation on
aprimary copy of data on a primary entity while sending
the data to a secondary entity while awaiting an
acknowledgment by the secondary entity, wherein the
acknowledgment indicates to the primary entity that
metadata for the write operation has arrived at the sec-
ondary entity with or without indicating that the data has
committed on the secondary entity; and

a second executable portion that sends the acknowledg-
ment from the secondary entity regardless of a write
failure and allowing the secondary entity to perform a
recovery operation if a write failure occurs.

16. The computer program product of claim 15, further
including a third executable portion that, if the secondary
entity fails to commit the data on the secondary entity, per-
forms at least one of:

failing the write operation on the secondary entity, and

triggering a rebuild process on the secondary entity to
complete a full redundant state of the data on the sec-
ondary entity.

17. The computer program product of claim 16, further
including a fourth executable portion that, if a double concur-
rent write failure occurs where the secondary entity is per-
forming a retry of the write operation and the primary copy of
the data on the primary entity is lost, performs each one of:

forcing the secondary entity to become a new primary
entity, and

returning a read operation failure by the secondary entity to
an application when a read operation of a stale data block
arrives.

18. The computer program product of claim 17, further
including a fifth executable portion that allows for one of
internal recovery actions to be attempted and performing a
new write operation to the stale data block for turning the stale
data block to a valid data block by delaying a processing
operation of the write failure of the secondary copy.

19. The computer program product of claim 15, further
including a third executable portion that sets a mark on a data
allocation table during the write operation on the secondary
entity.

20. The computer program product of claim 19, further
including a fourth executable portion that performs at least
one of:

marking the data block as stale in the data allocation table
prior to the acknowledgment being sent by the second-
ary entity,

using the acknowledgment for the write operation to return
a success notification to the primary entity prior to com-
mitting the data on the secondary entity, and

sending the acknowledgment from the secondary entity to
the primary entity after the data block is marked as stale.

#* #* #* #* #*

